Monday, 21 June 2021

CLASS 11 CS CHAPTER 14

 

CLASS -11  COMPUTER  SCIENCE

                      CHAPTER- 14  BOOLEAN  LOGIC


🔔To download textbook pdf click on the ''DOWNLOAD'' button below -



NOTES FOR COMPLETE UNDERSTANDING -


  • Boolean Logic, also known as boolean algebra was developed by mathematician “George Boole”. 

  • Later, Boolean logic helped in solving many big problems. 

  • These logics also helped in developing circuits. 

  • Complete logic is based on Yes or No which is also represented as True(T) or False(F). 

  • Computer system transmits its signals on high voltage or low voltage which can be denoted by true or false and with which we can develop it’s circuit.

  • Binary Values (Quantities) ;
  • In our daily life, we need to take logical decisions where answers comes in either Yes (T) or No (F). 
  • For ex- 
  • Should I have tea? 
  • The decisions which results in Yes or No only are known as binary decisions. 
  • Values T and F are known as truth values. 
  • Boolean variables can only be either T or F.
  • Indira Gandhi was the first lady Prime Minister of India (it results in true -T). Therefore it is a logic statement.
  • What do you want to eat ?( it can not be result in T or F). Therefore it is not a logic statement.

  • Logical Operations ;
  • These are of three types -      • AND          • OR          • NOT
  • These are used to develop compound statement. 
  •  For ex -                   • He prefers coffee not tea.                                                                                               • He plays guitar and sitar.                                                                                             • I watch TV on Sunday or I go for a movie. 
  • These are also used to join logical variables. 
  •  For ex- X NOT Y OR Z                             ,                      Y AND Z OR X
  • Logical Operators (NOT) :
  • NOT operator is represented by applying ( ‘ ) or ( ¯ ) on an expression. 
  • This is a unary operator also known as complementation operator . 
  • Ex -   0’ = 1 and 1’ = 0 
  • Truth table and Venn Diagram for NOT operator is as under :



  • Logical Operators (AND) :
  • AND operator is used by applying ( . ) between two variables. like X.Y 
  • It shows a very important operation of boolean algebra which is known as logical multiplication.
  • X.Y is to be read as X AND Y. 
  • Rules of AND operation are   ~ 0 . 0 = 0                          ~0 . 1 = 0                                                                                   ~1 . 0 = 0                          ~1 . 1 = 1 
  • AND operator’s truth table and Venn Diagram are as under ;



  • Logical Operators (OR) ;
  • OR operator is used by applying ( + ) between two variables , like X+Y
  • It shows a very important operation of boolean algebra which is known as logical addition.
  • X+Y is to be read as X OR Y. 
  • Rules of OR operation are       ~0 + 0 = 0                          ~ 0 + 1 = 1                                                                                ~1 + 0 = 1                          ~1 + 1 = 1 
  • OR operator’s truth table and Venn Diagram are as under :



  • Evaluation of Boolean Expression using Truth Table  :
  • To develop Boolean Expression, logical variables are used with logical operators. 
  • Truth table is used for its evaluation. 

  • Basic Logic Gates :
  • When Shannon used boolean logic in switching circuit of telephone then Engineers realized that boolean algebra can also be used in computer electronics. 
  • In computers, logic gates are used to complete boolean operations. 
  • A Gate is a basic Electronic Circuit used to develop an output signal by passing one or more input signal(s).
  • A Gate is a kind of two-state digital circuit because its input or output are either low voltage (i.e. 0) or high voltage (i.e.1).
  • Gates are also known as logic gates because they can coordinate with boolean logic. 
  • Logic gates are of three types--      1. Inverter (NOT Gate)                                                                                                    2. OR Gate                                                                                                                        3. AND Gate

  • Inverter (NOT Gate) :
  • NOT gate takes one input and produces one output.
  • Its output is exactly opposite to its input.
  • It is called NOT gate because its output is not similar to its input. 
  • Its output is also called as complement(opposite) of input.
  • Truth table and diagram of NOT gate are as under : 



  • OR Gate :
  • OR gate takes two or more inputs and produces one output.
  • Its output is logical sum of passed inputs. 
  • It produces high voltage output on any one high voltage input. It produces low voltage output only when all the inputs are of low voltage. 
  • This gate work for more than two input signals in similar manner.



  • AND Gate :
  • AND gate takes two or more inputs and produces one output. 
  • Its output is logical multiplication of passed inputs. 
  • It produces low voltage output on any of the input signal as low voltage input. It produces high voltage output only when all the inputs are of high voltage. 
  • AND Gate Truth table and diagram are as under- 


  • This gate work for more than two input signals in similar manner.

  • Boolean logic-Basic Postulates :
  • Boolean algebra is a kind of mathematical system because of which it is based on some fundamental laws which are known as basic postulates. 
  • Which are as follows- -                          
  • I. If X ≠ 0 then X = 1              and                       if X ≠ 1 then X = 0 
  • II. OR Relations (logical addition)    ~ 0 + 0 = 0                    ~ 0 + 1 = 1                                                                                    ~ 1 + 0 = 1                     ~ 1 + 1 = 1 
  • III. AND Relations (logical multiplication)                                                                                                                                 ~ 0 . 0 = 0                        ~ 0 . 1 = 0                                                                                   ~ 1 . 0 = 0                        ~ 1 . 1 = 1  
  • IV. Complementary Rules:                ~ 0’ = 1                           ~ 1’ = 0

  • Principle of DUALITY :
  • It is very important concept of boolean logic. 
  • A boolean relation can be drived by other boolean relation if we follow following rules -- 
  • 1. Every OR signal (+) is replaced by AND signal (.). 
  • 2. Every AND signal (.) is replaced by OR signal (+). 
  • 3. Every 1 is replaced by 0 and every 0 is replaced by 1. 
  • The received expression will be dual expression of original expression. 

  • Main Concepts of Boolean Algebra :

  • I. Properties of 0 and 1 --
  •  0 + X = X 
  • 1 + X = 1 
  • 0 . X = 0 
  • 1 . X = X

  • II. Idempotence Law -       (a) X + X = X                         (b) X . X = X

  • III. Involution – (X’)’ = X  

  • IV. Complementarity Law –    (a) X + X’ = 1                   (b) X . X’ = 0 

  • V. Commutative Law –    (a) X + Y = Y + X                     (b) X . Y = X . Y

  • VI. Associative Law –     (a) X+(Y+Z) = (X+Y)+Z           (b) X . (Y . Z) = (X . Y) . Z 

  • VII. Distributive Law – (a) X . (Y + Z) = X.Y + X.Z                                                                                             (b) X + Y.Z = (X + Y) . (X + Z)

  • VIII. Absorption Law –    (a) X + X . Y = X                      (b) X . (X + Y) = X 

  • IX. Other rules (Third Distributive Law) X + X’.Y = X + Y X   

  • X. DEMORGAN’s Law – (a) (X+Y)’ = X’ . Y’                 (b) (X.Y)’ = X’ + Y’ 

  • You can prove a law with the help of truth table and can also be proven mathematically. 

  • Minimization of Boolean Expression algebraically;
  • Minimize the expression- AB’CD’ + AB’CD +ABCD’ + ABCD 
  • Solution: AB’CD’ + AB’CD +ABCD’ + ABCD = AB’C(D’+D)+ABC(D’+D)                                                                                           =AB’C + ABC                                                                                                                   = AC (B’+B)                                                                                                                     = AC.1                                                                                                                               = AC

  • Other Logic Gates :
  • There are some derived gates also besides AND, OR, NOT Gates. 
  • Like- NOR, NAND, XOR, XNOR Gates. 

  • NOR Gate: There is two or more input signals and one output signal in NOR gate if all input signals are 0 (low) then output signal will be 1 (high).




  • NAND Gate : There is two or more input signals and one output signal in NAND gate if all input signals are 1 (high) then output signal will be 0 (low). 
  • It is also known as universal gate because fundamental gates can be retrieved with its help.



  • XOR Gate : XOR Gate produces 1 (high) when inputs are not at equal logic level. 
  • It is also known as universal gate because fundamental gates can be retrieved with its help. 




  • XNOR Gate : XNOR Gate produces 1 (high) when the inputs are identical (both 1’s or both 0’s).


              

               🔔MORE MATERIALS TO BE UPLOADED STAY TUNED🔔

WHY Software Developer ?